skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Templin, Zoe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 11, 2026
  2. Free, publicly-accessible full text available July 11, 2026
  3. Free, publicly-accessible full text available June 29, 2026
  4. Free, publicly-accessible full text available May 1, 2026
  5. Neuromorphic computing is considered to have the potential to overcome the limitations of traditional von Neumann architecture due to its high efficiency, low energy consumption, and fault-tolerance. Hardware components that can emulate the synaptic plasticity of neurons, i.e. artificial synaptic devices, are required by neuromorphic systems. New devices have been examined for such components, such as phase-change artificial synapse, ferroelectric artificial synapse, and memristor synapses. Among them, memristor, a two-terminal metal-insulator-metal structure that are analogous to a biological synapse with presynaptic neuron (top electrode), postsynapticneuron (bottom electrode), and synaptic cleft (memristive film), is a promising device technology because of its tunable resistance, scalability, 3D integration compatibility, low power consumption, and relatively high speed. In contrary to inorganic materials such as metal oxides, natural organic materials have attracted interest to form the memristive layer because they are renewable, biodegradable, sustainable, biocompatible, and environmentally friendly. In this paper, honey solution embedded with carbon nanotubes (CNTs) was processed into the memristive layer by a low cost solution-based process, with synaptic plasticity of the final honey-CNT memristors characterized, including forget and relearn, spike-rate-dependent plasticity, spike-voltage-dependent plasticity, short-term to long-term memory transition, paired pulse facilitation, and spatial supra-linear summation behaviors. The successful emulation of these essential biological synaptic behaviors demonstrates the potential of honey-CNT memristors as a viable hardware component in neuromorphic computing systems. 
    more » « less
  6. Artificial synaptic devices made from natural biomaterials capable of emulating functions of biological synapses, such as synaptic plasticity and memory functions, are desirable for the construction of brain-inspired neuromorphic computing systems. The metal/dielectric/metal device structure is analogous to the pre-synapse/synaptic cleft/post-synapse structure of the biological neuron, while using natural biomaterials promotes ecologically friendly, sustainable, renewable, and low-cost electronic devices. In this work, artificial synaptic devices made from honey mixed with carbon nanotubes, honey-carbon nanotube (CNT) memristors, were investigated. The devices emulated spike-timing-dependent plasticity, with synaptic weight as high as 500%, and demonstrated a paired-pulse facilitation gain of 800%, which is the largest value ever reported. 206-level long-term potentiation (LTP) and long-term depression (LTD) were demonstrated. A conduction model was applied to explain the filament formation and dissolution in the honey-CNT film, and compared to the LTP/LTD mechanism in biological synapses. In addition, the short-term and long-term memory behaviors were clearly demonstrated by an array of 5 × 5 devices. This study shows that the honey-CNT memristor is a promising artificial synaptic device technology for applications in sustainable neuromorphic computing. 
    more » « less
  7. Natural organic materials such as protein and carbohydrates are abundant in nature, renewable, and biodegradable, desirable for the construction of artificial synaptic devices for emerging neuromorphic computing systems with energy efficient operation and environmentally friendly disposal. These artificial synaptic devices are based on memristors or transistors with the memristive layer or gate dielectric formed by natural organic materials. The fundamental requirement for these synaptic devices is the ability to mimic the memory and learning behaviors of biological synapses. This paper reviews the synaptic functions emulated by a variety of artificial synaptic devices based on natural organic materials and provides a useful guidance for testing and investigating more of such devices. 
    more » « less